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Abstract. An analytical model for the nucleation of edge misfit dislocations in cylindrical core-
shell nanowires with a diffuse interface boundary is developed. The model is formulated within
the framework of linear isotropic elasticity theory and accounts for the interplay between the
nanowire’s geometry, interface diffuseness, and lattice mismatch. By evaluating the total energy
change associated with dislocation formation, we systematically analyze the dependence of
energetic favorability of dislocation nucleation on the core/shell radius ratio, diffuse interface
width, and misfit parameter. The results demonstrate that sharp interfaces maximize the energy
gain from dislocation formation, whereas diffuse interfaces suppress it, particularly in nanowires
with thin cores. The optimal dislocation nucleation site is primarily governed by geometry
features and only weakly influenced by misfit parameter. A critical misfit parameter is identified,
above which the nanowire coherent state becomes unstable. The analysis reveals that while
broader diffuse interfaces reduce the tendency for relaxation process, increased lattice mismatch

promotes it.
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