Reviews on Advanced Materials and Technologies, 2025, vol. 7, no. 4, pp. 203-210
DOI: 10.17586/2687-0568-2025-7-4-203-210

Development of an Al Tool for Systematic Review of Scientific Articles

Containing IR-Spectra of Boron Nitride Nano- and Microparticles

I.M. Sosnin>’, A.R. Reznikova‘>', A.V. Frolova

Laboratory of Chemical Methods for Materials Elemental Analysis, Togliatti State University,
Belorusskaya str. 14, Togliatti, 445020, Russia

Received: November 16, 2025 Corresponding author: [.M. Sosnin

Abstract. In this work a creation of neural network method and its application to exploration of
optical-property data of hexagonal boron nitride nano- and microparticles is presented. In
particular, the method analyses the data of electromagnetic absorption in the infrared region. The
work shows how modern algorithms of natural language processing and deep-learning can be
used for automatization of search and analysis of raw data. In the work we apply deep neural
network models including convolutional neural network (CNN) for review of infrared spectra and
transformers (SciBERT, ChemBERTa) for examination of text information. Multimodal learning,

integrating CNN and semantic analysis of texts, was developed for survey heterogeneous data.
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