Features of Understanding and Describing the Hydrate Formation Process

N.A. Shostak

Higher School of Engineering "Oil and Gas and Energy Engineering", Kuban State Technological University, Moskovskaya str. 2, Krasnodar, 350072, Russia

Received: August 19, 2024 Corresponding author: N.A. Shostak

Abstract. Clathrate hydrates are not only a huge source of energy, but also potentially interesting from a technological point of view due to their ability to bind water. According to generally accepted modern concepts, hydrates formed by individual hydrate-formers or their mixtures are non-stoichiometric inclusion compounds of a cellular type with the crystal lattice built of water molecules held by hydrogen bonds. The molecules of the hydrate-former are located in the internal cavities of the crystal lattice and are held in them by van der Waals forces. The article presents a formalized description of the hydrate formation process. A model of hydrate formation in gas-water systems is proposed. The model describes the processes occurring during hydrate formation in structures. It contains equations for calculating the main energy and molecular parameters of the hydrate-former, as well as the kinetics of the process.

Citation: Rev. Adv. Mater. Technol., 2024, vol. 6, no. 3, pp. 113–119

View online: https://doi.org/10.17586/2687-0568-2024-6-3-113-119

View Table of Contents: https://reviewsamt.com/issues

REFERENCES

- [1] E.D. Sloan Jr., C.A. Koh, Clathrate Hydrates of Natural Gases (Third Edition), CRC Press, Boca Raton, 2007.
- [2] N.A. Shostak, Modelirovanie obrazovaniia i dissotsiatsii gidratov pri razrabotke i ekspluatatsii neftianykh i gazovykh mestorozhdenii [Modelling of the formation and dissociation of hydrates during oil and gas fields' production], Dissertation, Krasnodar, 2014 (in Russian).
- [3] M. von Stackelberg, H.R. Müller, Feste Gashydrate II. Struktur und Raumchemie, Z. Electrochem., 1954, vol. 58, no. 1, pp. 25–45.
- [4] Yu.A. Dyadin, G.N. Chekhova, N.P. Sokolova, Solid Clathrate Solutions, Journal of Inclusion Phenomena, 1987, vol. 5, pp. 187–194.

- [5] J.M. Schicks, Gas hydrates in nature and in the laboratory: necessary requirements for formation and properties of the resulting hydrate phase, ChemTexts, 2022, vol. 8, art. no. 13.
- [6] A. Falenty, T.C. Hansen, W.F. Kuhs, Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate, Nature, 2014, vol. 516, pp. 231–233.
- [7] E.P. Zaporozhets, N.A. Shostak, Method for calculating the parameters of formation of hydrates from multicomponent gases, Russ. J. Phys. Chem. A, 2016, vol. 90, no. 9, pp. 1843–1848.
- [8] J.S. Lipkowski, Structure of Clathrates, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 1995, vol. 92, pp. 307–338.
- [9] T.J. Hughes, Plug formation and dissociation of mixed gas hydrates and methane semi-clathrate hydrate stability, Ph.D. Thesis, University of Canterbury, 2008.
- [10] M.B. Rydzy, J.M. Schicks, R. Naumann, J. Erzinger, Dissociation Enthalpies of Synthesized Multicomponent Gas Hydrates with Respect to the Guest Composition and Cage Occupancy, J. Phys. Chem. B, 2007, vol. 111, no. 32, pp. 9539–9545.
- [11] S.M. Babakhani, B. Bouillot, J. Douzet, S. Ho-Van, J.M. Herri, PVTx measurements of mixed clathrate hydrates in batch conditions under different crystallization rates: Influence on equilibrium, J. Chem. Thermodynamics, 2018, vol. 122, pp. 73–84.
- [12] S.M. Babakhani, B. Bouillot, J. Douzet, S. Ho-Van, J.M. Herri, A new approach of studying mixed gas hydrates involving propane at non-equilibrium conditions and final state: An experimental study and modeling, Chem. Eng. Sci., 2018, vol. 179, pp. 150–160.
- [13] V.P. Shpakov, J.S. Tse, C.A. Tulk, B. Kvamme, V.R. Belosludov, Elastic moduli calculation and instability in structure I methane clathrate hydrate, Chem. Phys. Lett., 1998, vol. 282, no. 2, pp. 107– 114.
- [14] T. Ikeda, S. Mae, O. Yamamuro, T. Matsuo, S. Ikeda, R.M. Ibberson, Distortion of Host Lattice in Clathrate Hydrate as a Function of Guest Molecule and Temperature, J. Phys. Chem. A, 2000, vol. 104, no. 46, pp. 10623–10630.
- [15] K.A. Udachin, C.I. Ratcliffe, J.A. Ripmeester, Structure, composition, and thermal expansion of CO₂ hydrate from single crystal X-ray diffraction measurements, J. Phys. Chem., 2001, vol. 105, no. 19, pp. 4200–4204.
- [16] Z. Huo, Hydrate Phase Equilibria Measurements by X-Ray Diffraction and Raman Spectroscopy, Ph.D. Thesis, Colorado School of Mines, 2002.
- [17] C.Y. Jones, S.L. Marshall, B.C. Chakoumakos, C.J. Rawn, Y. Ishii, Structure and thermal expansivity of tetrahydrofuran deuterate determined by neutron powder diffraction, J. Phys. Chem. B, 2003, vol. 107, no. 25, pp. 6026–6031.
- [18] A.G. Ogienko, A.V. Kurnosov, A.Y. Manakov, E.G. Larionov, A.I. Ancharov, M.A. Sheromov, A.N. Nesterov, Gas hydrates of argon and methane synthesized at high pressures: composition, thermal expansion, and self-preservation, J. Phys. Chem. B, 2006, vol. 110, no. 6, pp. 2840–2846.
- [19] A. Jäger, V. Vinš, J. Gernert, R. Span, J. Hrubý, Phase equilibria with hydrate formation in H₂O+CO₂ mixtures modeled with reference equations of state, Fluid Phase Equilibria, 2013, vol. 338, pp. 100– 113.
- [20] S. Takeya, S. Muromachi, Y. Yamamoto, H. Umeda, S. Matsuo, Preservation of CO₂ hydrate under different atmospheric conditions, Fluid Phase Equilibria, 2016, vol. 413, pp. 137–141.

© 2024 ITMO